Type A

From Hacklab.TO Public Wiki
Jump to: navigation, search
Type A

This page documents the Type A Series 1 (2013 plywood model).

Type A lives on the third shelf of the 3D printer tower, next to Ultimaker 2


Printbed is warped, with the zero stop set for a high center. (Use a large brim to help keep your prints "stuck".) So if needed, turn the Z-axis rod clockwise to bring the print head slightly closer to the build platform. Also, the X-axis shifts (due to a belt loosening) have been a problem. So don't try loooong prints, until this printer is proven to be reliable.

  • Operational ... use PETG head only for PETG, and the PLA head only for PLA.
  • The Printhead Heatsink Fan is always on ... so don't leave this printer powered on for long periods of time without printing.
  • Loaded with 1.75mm Black Filaments.ca PLA
  • Cura 15 Settings here
  • http://octopi3.hacklab.to/


  • Type A Series 1 (2013 plywood model).
  • 254 x 230 x 230 mm print volume
  • 1.75mm filament
  • .4mm nozzle
  • As the head uses a Teflon insert, do NOT run at more than 240°C (250°C absolute maximum temp.???)
  • It is managed and accessible from the web GUI: http://octopi3.hacklab.to/
  • Its manual is at http://bit.ly/1NDToMT (our Head Assembly is different.)

Known Issues and Fixes[edit]

  • Before starting to print, make sure the head heatsink fan is ON. If the connector on the cable came loose, then the filament will jam once that heatsink becomes too hot.
  • This Printer has a removable printbed. So before printing, make sure that all 4 screwheads are forward to properly secure the printbed.

IMPORTANT: All PETG filaments are not the same. This printer can only use PETG filaments where the maximum recommended printing temperature is 240°C. (MG Chemicals, iPrint-3D, Spool3D.ca & Cyclone Filament are some sources for that.) Most PETG filaments have a maximum recommended temperature of 260°C to 265°C.

Recommended Filament Settings[edit]

CURA 3 settings for PLA by Filaments.ca Quality

  • Layer Height: use anything from 0.1mm to 0.3mm


  • Printing Temperature: 190 °C
  • Diameter: 1.75 mm
  • Flow: 100 %
  • Retraction Distance: 0.65 mm
  • Retraction Speed: 40 mm/s


  • Print Speed: 75 mm/s (the other print speeds are calculated from this value)
  • Travel Speed 150 mm/s
  • Initial Layer Speed: 25 mm/s
  • Enable Acceleration Control: SELECTED
    • Print Acceleration: 2000 mm/s (2/3 of the default value)
    • Travel Acceleration: 3000 mm/s (60% of the default value)
  • Enable Jerk Control: SELECTED
    • Print Jerk: 20 mm/s (the default value)
    • Travel Jerk: 20 mm/s (set to same as Print Jerk)


  • Enable Costing: SELECTED (default values used for Coasting)

CURA 3 settings for PETG by iPrint3D & MG Chemicals

PLEASE NOTE: The below settings were used/tested only with Solid Color (not transparent) PETG filaments. As the Settings for any Transparent filament can be noticeably different for a solid color of the same product, the below may not provide acceptable results for Transparent PETG filaments.


  • Draft Quality ==> Layer Height: 0.2mm (Don't use less than this with PETG.)


  • Wall Thickness: 1.2 mm (3 perimeters seem to work a bit better than 2)
  • Top/Bottom Thickness: 1.2 mm (Same as above. Requires more than for PLA.)
  • Top/Bottom Pattern: Zig Zag


  • Infill Pattern: Zig Zag
  • Infill Overlap Percentage: 50
  • Skin Overlap Percentage: 10

The Infill Overlap is extremely high! This value is used to ensure the infill will not separate from the Shell layers.


  • Printing Temperature: 240 °C
  • Diameter: 1.75 mm
  • Flow: 100 %
  • Retraction Distance: 0.5 mm
  • Retraction Speed: 25 mm/s
    • Retraction Retract Speed: 25 mm/s
    • Retraction Prime Speed: 40 mm/s


  • Print Speed: 25 mm/s
    • Infill Speed: 40 mm/s
    • Wall Speed 20 mm/s
      • Outer Wall Speed: 20 mm/s
      • Inner Wall Speed: 25 mm/s
    • Support Speed: 25 mm/s
  • Travel Speed 240 mm/s
  • Initial Layer Speed: 20 mm/s
  • Enable Acceleration Control: SELECTED
    • Print Acceleration: 2000 mm/s (2/3 of the default value)
    • Travel Acceleration: 3000 mm/s (60% of the default value)
  • Enable Jerk Control: SELECTED
    • Print Jerk: 20 mm/s (the default value)
    • Travel Jerk: 20 mm/s (set to same as Print Jerk)


  • Z Hop When Retracted: SELECTED
  • Z Hop Height: 0.5 mm


  • Support Pattern: Lines
  • Support Density: 20%


  • Enable Print Cooling: UNSELECTED
  • Minimum Layer Time: 10 s

Special Modes

  • Print Sequence: One at a Time


  • Enable Costing: SELECTED
    • Costing Volume: 1.0 mm3 (aprox. 150% the Cura 3 default value)

The new (experimental) Costing Feature of Cura 3 is what enables the above settings to provide a very noticeable improvement in the PETG print quality. Where using Costing together with a small retraction works far far better than using just retractions.


  • The above settings are a "best compromise", to get good results, without limiting the print speed any more than necessary.
  • For best results printing PETG, do not use the Filament Fan. (Print with the Hotend Heatsink Fan only.) When the Filament Fan is used, expect layer separation problems. When printed without using a Filament Fan, PETG has exceptional layer bonding.
  • As a filament type, PETG is terrible at things like bridging. This includes you might need just a bit more top surface over infill to get a smooth outer layer.
  • As the head moves through spiderweb thin strands between printed parts, PETG filament build-up on the outside of the printhead. Despite this, any print that could be described as a "highly shaped bock of plastic" will work well. But for prints where the head constantly moves over open air (no plastic under the head), the melted PETG dropping off the outside of the printhead might cause that print to fail.

Cura 3 Settings for this Printer[edit]

To use the below settings, create a Custom FDM printer, then edit the Machine Settings for that printer to contain the following:
Printer Settings

  • X (Width): 254 mm
  • Y (Depth): 230 mm
  • Z (Height): 230 mm
  • Build plate shape: Rectangular
  • Origin at center: UNSELECTED
  • Heated bed: UNSELECTED
  • Gcode Flavor: Marlin

Printhead Settings

  • X min: 30 mm
  • Y min: 30 mm
  • X max: 55 mm
  • Y max: 60 mm
  • Gantry height: 110.0 mm
  • Number of Extruders: 1
  • Material Diameter: 1.75 mm
  • Nozzle size: 0.4 mm

Start Gcode

 ;Sliced at: {day} {date} {time}
 G21        ;metric values
 G90        ;absolute positioning
 M82        ;set extruder to absolute mode
 M107       ;start with the fan off
 G28 X0 Y0  ;move X/Y to min endstops
 G28 Z0     ;move Z to min endstops
 G1 Z15.0 F{travel_speed} ;move the platform down 15mm
 G92 E0                  ;zero the extruded length
 G1 F200 E3              ;extrude 3mm of feed stock
 G92 E0                  ;zero the extruded length again
 G1 F{travel_speed}
 M117 Printing...

End Gcode

 ;End GCode
 M104 S0                     ;extruder heater off
 M140 S0                     ;heated bed heater off (if you have it)
 G91                                    ;relative positioning
 G1 E-1 F300                            ;retract the filament a bit before lifting the nozzle, to release some of the pressure
 G1 Z+0.5 E-5 X-20 Y-20 F{travel_speed} ;move Z up a bit and retract filament even more
 G28 X0 Y0                              ;move X/Y to min endstops, so the head is out of the way
 M84                         ;steppers off
 G90                         ;absolute positioning

Machine Log[edit]

Date Notes Entry By
February 14, 2018
  • After about 6hrs of printing perfectly, suddenly get a large x-axis shift again.
  • This video uses a different driver board -- but provides an EXCELLENT way to measure the Ref. Voltage for the driver current.
  • This photo proveides info. about the G3D Drive Board that is used in this printer.
  • The REF voltage was upped from 0.5V to 0.64V
    • This should correspond to a current increase from 625mA to 800mA
  • FAILED AGAIN, this time with a large y-axis shift ... so apparently that stepper driver also needs to be adjusted.
February 13, 2018
  • When 1st tried using, attempting to move the X-axis often just made ugly noises. (Will not move all way to the right side.)
  • Spent hours adjusting the X-axis belts to even get this to print. (Belt not lined up problems, etc..)
  • Then spent hours more continuing to make tiny adjustments, to get a print that finally did not have any x-axis shift.
  • All of this ended up leaving the x-axis belt a bit looser than I would like
  • ATRAIN advised that it seemed like the stepper current needed to be increased.
February 08, 2018
  • Tighten the X-axis Belts yet again. (Really tighten, and use old white glue on/behind washer to prevent slipping.)
  • Update the firmware for the final PID values.
 // AluHotend E3Dv6
   #define  DEFAULT_Kp 8.66
   #define  DEFAULT_Ki 1.02
   #define  DEFAULT_Kd 48.80
  • NOTE: had to leave this in what I hoped was working order, as the glue should be left to dry for 24hrs.
December 14, 2017
  • Assemble & Test the 2nd head assembly for PLA.
December 13, 2017
  • Suddenly have constant layer shifts due to LOOSE BELTS. (Very loose, both X & Y.)
  • Tighten all 3 Belts for X/Y movement.
  • Once X belt tight, spot that an M2 or M3 screw into the plywood slot, could be used to prevent the washers from moving.
  • Use cut-off nails to "pin" the washers for the assembly to tighten the 2 Y belts.
December 07, 2017
  • AGAIN suddenly have a layer shifts due to LOOSE BELT. (X belt very loose again)
  • Tighten the X belt yet again.
November 08, 2017
  • Suddenly have constant layer shifts due to LOOSE BELTS. (Very loose, both X & Y.)
  • Tighten all 3 Belts for X/Y movement.
  • The 2 Y Belts will continue to loosen due to how the front plywood piece is warping.
November 07, 2017
  • Replace Nozzle with a REAL E3D Nozzle, and tighten to stop PETG leaking. (Took only 1 try to properly tighten using the REAL E3D Nozzle.)
November 02, 2017
  • PETG is again leaking out between the Nozzle & the Heatblock.
  • Tried tightening this 3 times ... still leaking ... waiting for REAL E3D Nozzle to try again.
October 12, 2017
  • Print & Install a 50mm Radial to 40mm Axial Fan adapter.
  • a PETG Test Print was done using this ... does not cool down head too much ... but a heat-block Silicone Sock is desirable.
August 30, 2017
  • Correctly Tighten the Heatbreak & Nozzle to stop PETG leaking out.
    • Back off snug Nozzle by at most 1/4 turn.
    • Heat up the head to 240°C (PETG printing Temp.)
    • Tighten the Heatbreak into the Heatblock, to stop PETG leaking out of that.
      • Cap off block holding Groovemount ... so can rotate entire head assembly. Then a wrench on ends of Heatblock, & turn that.
    • Tighten the Nozzle against the end of the Tefflon Insert in the Heatbreak.
  • Print a Filament Guide to assist filament feeding smoothly into the Extruder. ( https://www.thingiverse.com/thing:33894 )
August 29, 2017 Allen
August 21, 2017
  • Updated firmware using "stock" firmware with just some configuration changes
  • w/ help from Igor, troubleshoot problems with new head. (BAD thermistor.)
  • Crimp Molex Connectors onto the 2nd head that we have.
    • Head Temp.'s seem to oscillate plus/minus 10°C !!!
  • Run PID auto-tuning, to determine values that will provide stable head temperatures.
    • Had to completely unplug this printer (including USB) for a couple of min. to get auto-tuning to stop continuously running.
    • Set the "good" values that were written down into Octoprint. (Will flash those values into firmware next.)
  • Was not able to get the PETG to stop leaking out between the Heatbreak & the Heater Block. (Not willing to risk breaking another Heatbreak.)
    • Finally resorted to using some ABS filament where the Heatbreak comes out of the Block to seal that.
August 10, 2017
  • The correct Molex Connectors were finally crimped onto one of the AluHotend/E3Dv6 (from China) heads.
  • NOW the Firmware needs to be updated to use this new head.
  • A 3rd head is also on its way from China. (Already have 5 sets of the needed connectors for the head.)
July 13, 2017 Have a 2nd AluHotend/E3Dv6 hot end for this printer. So multiple easy to change print heads (1 per filament type?) are now possible. Allen
July 4, 2017
  • Using information from the Internet ( https://www.summet.com/blog/2013/09/09/makergear-hot-end-molex-connectors/ ) order 5 sets of connectors for the Type A head from DigiKey.
  • Unable to successfully crimp the small connectors for the Type A printhead.
  • Now the 1 spare set of crimp contacts is ruined, work stopped until the correct crimp tool can somehow be obtained.
    • NOTE: Since the Type A uses a special theristor, I do not want to cut the connector off of that.
June 22, 2017 While trying to fit Hotend Heatsink Cooling Fan, the Nichrome wire broke off right where it goes into the circular ceramic. Now must rebuild using a E3D v6 Head. (As purchased, on the AluHotend heatbreak.) Per instructions on the Internet, that will require changed/custom firmware. Allen
June 17, 2017
  • All Rods & the screw were lubricated using Silicone based lubricants.
  • Started to hear concerning "clicking" noises from the left back ... possibly related to Y-Axis movement.
June 13-14, 2017
  • New PTFE lined 35mm Heatbreak & New Head used to reassemble the printhead
  • ONLY an extra heatsink on the Metal Grovemount block is NOT adequate. So a fan for the AluHotend heatsink will be necessary .
  • PLA will JAM due to Hotend heat creep making the AluHotend heat sink too hot. (Must remove Grovemount head to clear.)
    • PETG works, but if the fan is left off, eventually it can also stop feeding. (PETG jam easily cleared w/o removing head.)
  • Finding exactly the correct settings to make the MG Chemicals PETG filament work well is extremely time consuming.
    • NOTE: The listed MG Chemicals PETG temp. range is 210°C to 240°C ... which is as much as 20° less than some other PETG filaments.
  • Molten (PETG) filament was leaking from where the Nozzle screws onto the Heatbreak. It required 3 trys to get the head tightened enough to stop that leakage.
May 24, 2017 1st attempt to replace Grovemount & Heatbreak ended with a broken part. The needed parts are on order. (Aprox. 30 days from China.) Everything was installed and working briefly before the cracked heatbreak broke. Trying to use the installed Heatsink & Thermal Compound on the Metal Extruder block, instead of a fan on the small metal Grovemount fins. (This rebuild will be simpler if a 2nd fan is not needed.) Allen
April 28, 2017 Un-Jammed the filament in the print-head. (Jammed in the black quickmount part?) Can push the filament through by hand. (Almost breaking filament using that much force.) But will *not* extrude properly. So something is not moving freely in the quickmount head assembly. Allen
March 28, 2017 Tried to print, but machine is under-extruding like crazy. The first layer did not lay down, the filament came out like small blobs instead of a constant stream, even at 115% flowrate. I will order a new brass head and teflon tube from china. ran0
February 18, 2017 as per @Myles: OctoPi3 is working if you need to use a 3D printer. MikeP
January 2017 Attempted cleaning nozzle, printer still under-extruding ran0
January 28 2016 The X (and to a lesser degree the Y) axis are skipping and it ends up offset. Tightened the belts. All good. alaina
January 1 2016 Print head not extruding. Mechanics and octopi commands seem to be working fine, but filament does not extrude from print head. Also, the Z axis is off a little, and home is slightly too close to the print head. Easily adjusted by hand. emmy (saskeah)
January 2 2016 On Igor's advice, I tried pushing through some filament (with the hot end at 185C), and it came through just fine. The pinch wheel needs to be cleaned before using, using the compressed air and little metal brushes by the soldering station. On my to do list (hopefully before end of Tuesday) is to clean out the print head using Igor's "cold push" method, clean the pinch wheel, adjust the Z axis, and re-tape the bed, then print a calibration object to make sure all is good. Also, if anyone else does all of this and wants to print - just a note that the 1.75 inch filament is *super* brittle, so be careful! emmy (saskeah)
January 2 2016 Cold push clean out of extruder head done, extruder doesn't seem to be blocked. Next step is to clean out the pinch wheel, which is on my to-do before Tuesday, unless someone else feels like taking that on. emmy (saskeah)
January 3 2016 Pinch wheel cleaned with compressed air. Bed re-taped and cleaned with isopropyl alcohol. Cold push clean of extruder head repeated for good measure (and during a sticky moment unicycledave took the head apart and removed some extra gunk). Z axis adjusted. Attempted a calibration object, z axis held bed too far from the print head. Attempted again with adjustment, print head was too close and scraped the tape. Good news: printer totally functional. Bad news: Z axis still needs tweaking, and part of the bed needs to be re-taped again. emmy (saskeah)
January 4 2016 Bed re-taped, z axis double-checked. Type A gets my stamp of approval - good to go! emmy (saskeah)
January 10 2016 Did a test print that came out perfectly calibrated, but with some relatively minor gaps in extrusion. emmy (saskeah)
January 17 2016 Tried another test print that came out with more pronounced gaps in extrusion. Tried a calibration cube at 220 C, and it came out well. Downloaded the new version of Cura and used the default presets to print another test cube. The presets are fairly different from the previous version, and the test print came out perfectly. emmy (saskeah)

Parts and Supplies Wish List[edit]

  • www.aliexpress.com/item/A-Funssor-Silicone-Socks-for-v6-hotend-SILICONE-HEATER-BLOCK-COVER-Heater-Block-Silicone-Insulation-Blue/32823079702.html
    • 3pcs (for the 3 Printheads that were purchased), shipped by ePacket (becomes XpressPost in Canada.)
    • This is the correct Silicone Sock for the "made in China" E3D clone heat-block that we are using.